Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462075

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), right ventricular (RV) failure and premature death. Compounds with vasodilatory characteristics, such as ß-caryophyllene, could be promising therapeutics for PAH. This study aimed to determine the effects of free and nanoemulsified ß-caryophyllene in lung oxidative stress and heart function in PAH rats. Male Wistar rats (170 g, n = 6/group) were divided into four groups: control (CO), monocrotaline (MCT), monocrotaline + ß-caryophyllene (MCT-Bcar) and monocrotaline + nanoemulsion with ß-caryophyllene (MCT-Nano). PAH was induced by MCT (60 mg/kg i.p.), and 7 days later, treatment with ß-caryophyllene, either free or in a nanoemulsion (by gavage, 176 mg/kg/day) or vehicle was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and after, the RV was collected for morphometry and the lungs for evaluation of oxidative stress, antioxidant enzymes, total sulfhydryl compounds, nitric oxide synthase (NOS) activity and endothelin-1 receptor expression. RV hypertrophy, increased PVR and RV systolic and diastolic pressures (RVSP and RVEDP, respectively) and increased mean pulmonary arterial pressure (mPAP) were observed in the MCT group. Treatment with both free and nanoemulsified ß-caryophyllene reduced RV hypertrophy, mPAP, RVSP and lipid peroxidation. The reduction in RVSP was more pronounced in the MCT-Nano group. Moreover, RVEDP decreased only in the MCT-Nano group. These treatments also increased superoxide dismutase, catalase and NOS activities and decreased endothelin-1 receptors expression. Both ß-caryophyllene formulations improved mPAP, PVR and oxidative stress parameters. However, ß-caryophyllene in a nanoemulsion was more effective in attenuating the effects of PAH.


Assuntos
Hipertensão Pulmonar , Sesquiterpenos Policíclicos , Hipertensão Arterial Pulmonar , Ratos , Masculino , Animais , Hipertensão Arterial Pulmonar/metabolismo , Monocrotalina/toxicidade , Monocrotalina/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Ratos Wistar , Artéria Pulmonar/metabolismo , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38547510

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance, imposing overload on the right ventricle (RV) and imbalance of redox state. Our study investigated the influence of treatment with sulforaphane (SFN), found in cruciferous vegetables, on right ventricle (RV) remodeling and redox homeostasis in monocrotaline-induced pulmonary arterial hypertension (PAH). Male Wistar rats were separated into four groups: control (CTR); control + sulforaphane (CTR + SFN); monocrotaline (MCT); monocrotaline + sulforaphane (MCT + SFN). PAH induction was implemented by a single dose of MCT (60 mg/kg i.p.). Treatment with SFN (2.5 mg/kg/day i.p.) started on the 7th day after the MCT injection and persisted for 2 weeks. After 21 days of PAH induction, echocardiography, hemodynamic, and oxidative stress evaluation were performed. MCT group showed increase in RV hypertrophy, RV systolic area, RV systolic, mean pulmonary artery pressure (mPAP), and pulmonary vascular resistance (PVR), while exhibited a decrease in RV outflow tract AT/ET ratio, RV fractional shortening and tricuspid annular plane systolic excursion (TAPSE) compared to CTR (P<0.05). SFN-treated PAH attenuated detrimental changes in TPSE, mPAP, and PVR parameters. Catalase and GSH/GSSG ratio were diminished in MCT compared to CTR (P<0.05). SFN increased catalase and normalized GSH/GSSG ratio to control levels (P<0.05). Data express a benefit of SFN treatment on the cardiac function of rats with PAH associated with the cellular redox state.

3.
Biomedicines ; 11(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38001921

RESUMO

Aging is a risk factor for many non-communicable diseases such as cardiovascular and neurodegenerative diseases. Extracellular vesicles and particles (EVP) carry microRNAs that may play a role in age-related diseases and may induce oxidative stress. We hypothesized that aging could impact EVP miRNA and impair redox homeostasis, contributing to chronic age-related diseases. Our aims were to investigate the microRNA profiles of circulating total EVPs from aged and young adult animals and to evaluate the pro- and antioxidant machinery in circulating total EVPs. Plasma from 3- and 21-month-old male Wistar rats were collected, and total EVPs were isolated. MicroRNA isolation and microarray expression analysis were performed on EVPs to determine the predicted regulation of targeted mRNAs. Thirty-one mature microRNAs in circulating EVPs were impacted by age and were predicted to target molecules in canonical pathways directly related to cardiovascular diseases and oxidative status. Circulating total EVPs from aged rats had significantly higher NADPH oxidase levels and myeloperoxidase activity, whereas catalase activity was significantly reduced in EVPs from aged animals. Our data shows that circulating total EVP cargo-specifically microRNAs and oxidative enzymes-are involved in redox imbalance in the aging process and can potentially drive cardiovascular aging and, consequently, cardiac disease.

4.
Can J Physiol Pharmacol ; 101(9): 447-454, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581356

RESUMO

Oxidative stress is involved in increased pulmonary vascular resistance (PVR) and right ventricular (RV) hypertrophy, characteristics of pulmonary arterial hypertension (PAH). Copaiba oil, an antioxidant compound, could attenuate PAH damage. This study's aim was to determine the effects of copaiba oil on lung oxidative stress, PVR, and mean pulmonary arterial pressure (mPAP) in the monocrotaline (MCT) model of PAH. Male Wistar rats (170 g, n = 7/group) were divided into four groups: control, MCT, copaiba oil, and MCT + copaiba oil (MCT-O). PAH was induced by MCT (60 mg/kg i.p.) and, after 1 week, the treatment with copaiba oil (400 mg/kg/day gavage) was started for 14 days. Echocardiographic and hemodynamic measurements were performed. RV was collected for morphometric evaluations and lungs and the pulmonary artery were used for biochemical analysis. Copaiba oil significantly reduced RV hypertrophy, PVR, mPAP, and antioxidant enzyme activities in the MCT-O group. Moreover, increased nitric oxide synthase and decreased NADPH oxidase activities were observed in the MCT-O group. In conclusion, copaiba oil was able to improve the balance between nitric oxide and reactive oxygen species in lungs and the pulmonary artery and to reduce PVR, which could explain a decrease in RV hypertrophy in this PAH model.


Assuntos
Hipertensão Pulmonar , Óleos Voláteis , Hipertensão Arterial Pulmonar , Ratos , Masculino , Animais , Ratos Wistar , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina/efeitos adversos , Óxido Nítrico , Antioxidantes/farmacologia , Disponibilidade Biológica , Pulmão , Artéria Pulmonar , Hipertensão Pulmonar Primária Familiar , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/tratamento farmacológico , Óleos Voláteis/farmacologia , Modelos Animais de Doenças
5.
Can J Physiol Pharmacol ; 101(2): 106-116, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661235

RESUMO

Inflammatory pathways of Toll-like receptor 4 (TLR4) and NLRP3 inflammasome contribute to acute myocardial infarction (AMI) pathophysiology. The hypoxia-inducible factor 1α (HIF-1α), however, is a key transcription factor related to cardioprotection. This study aimed to compare the influence of carvedilol and thyroid hormones (TH) on inflammatory and HIF-1α proteins and on cardiac haemodynamics in the infarcted heart. Male Wistar rats were allocated into five groups: sham-operated group (SHAM), infarcted group (MI), infarcted treated with the carvedilol group (MI + C), infarcted treated with the TH group (MI + TH), and infarcted co-treated with the carvedilol and TH group (MI + C + TH). Haemodynamic analysis was assessed 15 days post-AMI. The left ventricle (LV) was collected for morphometric and Western blot analysis. The MI group presented LV systolic pressure reduction, LV end-diastolic pressure elevation, and contractility index decrease compared to the SHAM group. The MI + C, MI + TH, and MI + C + TH groups did not reveal such alterations compared to the SHAM group. The MI + TH and MI + C + TH groups presented reduced MyD88 and NLRP3 and increased HIF-1α levels. In conclusion, all treatments preserve the cardiac haemodynamic, and only TH, as isolated treatment or in co-treatment with carvedilol, was able to reduce MyD88 and NLRP3 and increase HIF-1α in the infarcted heart.


Assuntos
Fator 88 de Diferenciação Mieloide , Infarto do Miocárdio , Animais , Masculino , Ratos , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Infarto do Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Wistar , Hormônios Tireóideos
6.
Int J Med Mushrooms ; 24(4): 31-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695594

RESUMO

The main objective of this work was to evaluate whether Pleurotus albidus extract exerts influences on aorta artery tone by its antioxidant properties. The hearts and aortic arteries of male Wistar rats were removed for use in biochemical analysis and vascular reactivity. Both tissues were exposed to P. albidus extract at different concentrations for 30 min and were then exposed to a free radical generation system for 30 min. The extract reduced lipid peroxidation levels and increased catalase and glutathione peroxidase activity in cardiac tissue. In the aorta, P. albidus extract demonstrated a direct vasodilatory effect, which was associated with a reduction in nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity and an increase in sulfhydryl levels and nitric oxide synthase (NOS) activity. Our findings suggest that P. albidus extract has regulatory potential on aorta arteries, regulating the balance of NOX/NOS enzymes and then influencing vessel tone. Further studies are needed to determine the protective mechanisms of the extract.


Assuntos
Antioxidantes , Vasodilatação , Animais , Antioxidantes/farmacologia , Aorta , Masculino , NADP/farmacologia , Óxido Nítrico , Óxido Nítrico Sintase/metabolismo , Pleurotus , Ratos , Ratos Wistar
7.
Arq Bras Cardiol ; 118(2): 435-445, 2022 02.
Artigo em Inglês, Português | MEDLINE | ID: mdl-35262578

RESUMO

BACKGROUND: Pterostilbene (PS), a natural and antioxidant polyphenolic compound emerges as a promising intervention in improving the myocardial infarction (MI) damages. OBJETIVES: This study aimed to evaluate PS actions in promoting redox homeostasis in lungs and right ventricle (RV) of infarcted animals. METHODS: Male Wistar rats (60 day-old) were randomized into three groups: SHAM, MI (infarcted), and MI+PS (MI+pterostilbene). Seven days after MI procedure, rats were treated with PS (100 mg/kg/day) via gavage for eight days. Animals were euthanized and the lungs and RV were harvested for analyses of redox balance (Differences were considered significant when p<0.05). RESULTS: Our results show that MI triggers a redox disruption scenario in RV and lungs, which can contribute to MI-induced damage on these organs. Consistently, PS mitigated oxidative stress and restored antioxidant defenses (GSH in lungs: SHAM= 0.79±0.07; MI=0.67±0.05; MI+PS=0.86±0.14; p<0.05), indicating its protective role in this scenario. CONCLUSIONS: Our work evidences the PS potential use as an adjuvant therapeutic approach after MI focusing on protecting pulmonary and right-sided heart tissues.


FUNDAMENTO: O pterostilbeno (PS), um composto polifenólico natural e antioxidante, surge como uma intervenção promissora para minimizar danos do infarto agudo do miocárdio (IAM). OBJETIVO: Este estudo teve como objetivo avaliar o desempenho do PS na promoção da homeostase redox nos pulmões e no ventrículo direito (VD) de animais infartados. MÉTODOS: Ratos Wistar machos (60 dias de idade) foram randomizados em três grupos: SHAM, IAM (infarto) e IAM+PS (IAM + pterostilbeno). Sete dias após o procedimento de IAM, os ratos foram tratados com PS (100 mg/kg/dia) por gavagem por oito dias. Os animais foram depois sacrificados e os pulmões e VD foram coletados para análise do balanço redox (diferenças foram consideradas significativas quando p<0,05). RESULTADOS: Nossos resultados mostram que o IAM desencadeia a interrupção redox no VD e nos pulmões, o que pode contribuir para danos induzido pelo IAM nesses órgãos. Consistentemente, o PS mitigou o estresse oxidativo e restaurou as defesas antioxidantes (Glutationa ­ GSH nos pulmões: SHAM = 0,79 ± 0,07; IAM = 0,67 ± 0,05; IAM + PS = 0,86 ± 0,14; p<0,05), indicando seu papel protetor neste cenário. CONCLUSÃO: Nosso trabalho evidencia o potencial do uso de PS como abordagem terapêutica adjuvante após IAM para proteção dos tecidos pulmonares e cardíacos direitos.


Assuntos
Ventrículos do Coração , Pulmão , Infarto do Miocárdio , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Ventrículos do Coração/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Ratos , Ratos Wistar
8.
J Cardiovasc Pharmacol ; 79(3): 325-334, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35099167

RESUMO

ABSTRACT: Sulforaphane (SFN) is a natural exogenous antioxidant from cruciferous vegetables already shown to improve cardiac function in cardiovascular diseases. The aim of this study was to analyze the effect of SFN treatment on the cardiac function in 2 experimental models of heart disease, ischemia/reperfusion (I/R) and myocardial infarction (MI), and whether an improvement of the cardiac function could be associated with a modulation of calcium-handling proteins. The study was divided into 2 main experiments: experiment 1, ex vivo with the I/R model and experiment 2, in vivo with the MI model. In the I/R model, rats were divided into control and SFN (0.5 mg/kg/d intraperitoneally for 3 days) groups, and the hearts were submitted to global ischemia (20 minutes) followed by reperfusion (20 minutes) in a Langendorff apparatus. SFN did not change left ventricle systolic and diastolic pressures but increased the contractility and relaxation indexes after 20 minutes of reperfusion. These functional changes were accompanied by a decreased protein expression of ryanodine receptor (RyR) and increased expression of p-phospholamban/phospholamban ratio, without alteration in the sarco/endoplasmic calcium ATPase expression. In the MI model, rats were randomly divided into Sham, MI (MI induced by left coronary artery ligation), Sham + SFN (5 mg/kg/d intraperitoneally for 25 days), and MI + SFN groups. Although SFN did not affect cardiac function, it led to a decreased RyR protein expression and reactive oxygen species levels in the left ventricular of the MI + SFN group. These data indicate that SFN modulates calcium-handling proteins and, thus, cardiac inotropism/lusitropism especially when administered previously to an ischemic event.


Assuntos
Cálcio , Infarto do Miocárdio , Animais , Cálcio/metabolismo , Isotiocianatos , Modelos Teóricos , Infarto do Miocárdio/metabolismo , Ratos , Reperfusão , Sulfóxidos
9.
Mol Cell Biochem ; 477(3): 663-672, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988854

RESUMO

Enhanced sympathetic system activation mediated by norepinephrine (NE) contributes to adverse cardiac remodeling leading to oxidative stress and cell death, progressing to heart failure. Natural antioxidants may help maintain redox balance, attenuating NE-mediated cardiac cell damage. In the present study, we evaluated the effect of a blueberry extract (BBE) on H9c2 cardiac cells exposed to NE on cell death, oxidative stress status and its major signaling pathways. H9c2 cells were pre-incubated with 50 µg/ml of BBE for 4 h and maintained in the presence of 100 µM NE for 24 h. NE exposure resulted in increased caspase 3/7 activity. This was associated with reduced protein expression of antioxidants catalase, superoxide dismutase and glutathione peroxidase and increase in 4-hydroxynonenal adduct formation. NE led to increased activity of Protein kinase B (Akt), Forkhead box O3a and AMP-activated protein kinase alpha and decreased activity of Signal transducer and activator of transcription 3. BBE prevented caspases activation and abrogated NE-induced increase in oxidative stress, as well as attenuated the increase in Akt. Based on these findings, it is concluded that BBE promoted cardioprotection of H9c2 cells in an in vitro model of NE-induced oxidative damage, suggesting a cardioprotective role for BBE in response to NE exposure.


Assuntos
Apoptose/efeitos dos fármacos , Mirtilos Azuis (Planta)/química , Mioblastos Cardíacos/metabolismo , Norepinefrina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Extratos Vegetais/química , Ratos
10.
Arch Physiol Biochem ; 128(6): 1516-1523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32551929

RESUMO

CONTEXT: Infarction leads to a decrease in NO bioavailability in the erythrocytes. Thyroid hormones (TH) present positive effects after infarction. However, there are no studies evaluating the effects of cardioprotective doses of TH in the erythrocytes after infarction. OBJECTIVE: This study aimed to evaluate the effects of TH in NO bioavailability and oxidative stress parameters in the erythrocytes of infarcted rats. MATERIAL AND METHODS: Wistar rats were allocated into the three groups: Sham-operated (SHAM), infarcted (AMI) and infarcted + TH (AMIT). AMIT rats received T4 and T3 for 12 days by gavage. Subsequently, the animals were evaluated by echocardiography and the LV and erythrocytes were collected. RESULTS: TH improved NO bioavailability and increased catalase activity in the erythrocytes. Besides that, TH increased HIF-1α in the heart. CONCLUSION: TH seems to be positive for erythrocytes preventing a decrease in NO bioavailability and increasing antioxidant enzymatic defense after infarction.


Assuntos
Antioxidantes , Infarto do Miocárdio , Animais , Ratos , Catalase , Eritrócitos , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/metabolismo , Ratos Wistar , Hormônios Tireóideos/farmacologia , Óxido Nítrico
11.
Cell Mol Neurobiol ; 42(3): 829-846, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33079284

RESUMO

Sulforaphane is a natural compound that presents anti-inflammatory and antioxidant properties, including in the central nervous system (CNS). Astroglial cells are involved in several functions to maintain brain homeostasis, actively participating in the inflammatory response and antioxidant defense systems. We, herein, investigated the potential mechanisms involved in the glioprotective effects of sulforaphane in the C6 astrocyte cell line, when challenged with the inflammogen, lipopolysaccharide (LPS). Sulforaphane prevented the LPS-induced increase in the expression and/or release of pro-inflammatory mediators, possibly due to nuclear factor κB and hypoxia-inducible factor-1α activation. Sulforaphane also modulated the expressions of the Toll-like and adenosine receptors, which often mediate inflammatory processes induced by LPS. Additionally, sulforaphane increased the mRNA levels of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO1), both of which mediate several cytoprotective responses. Sulforaphane also prevented the increase in NADPH oxidase activity and the elevations of superoxide and 3-nitrotyrosine that were stimulated by LPS. In addition, sulforaphane and LPS modulated superoxide dismutase activity and glutathione metabolism. Interestingly, the anti-inflammatory and antioxidant effects of sulforaphane were blocked by HO1 pharmacological inhibition, suggesting its dependence on HO1 activity. Finally, in support of a glioprotective role, sulforaphane prevented the LPS-induced decrease in glutamate uptake, glutamine synthetase activity, and glial-derived neurotrophic factor (GDNF) levels, as well as the augmentations in S100B release and Na+, K+ ATPase activity. To our knowledge, this is the first study that has comprehensively explored the glioprotective effects of sulforaphane on astroglial cells, reinforcing the beneficial effects of sulforaphane on astroglial functionality.


Assuntos
Lipopolissacarídeos , Transdução de Sinais , Animais , Células Cultivadas , Isotiocianatos/farmacologia , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Sulfóxidos
12.
Eur J Nutr ; 61(1): 373-386, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34374852

RESUMO

PURPOSE: Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right ventricle (RV) failure. In this context, oxidative stress is an essential element contributing to PAH's pathophysiology. Thus, blueberry (BB), which has a high antioxidant capacity, emerges as a natural therapeutic approach in PAH. This work evaluated the effect of BB extract on redox balance in RV in a PAH's animal model. METHODS: Male Wistar rats (200 ± 20 g) (n = 72) were randomized into eight groups: control (CTR); monocrotaline (MCT); CTR and MCT treated at doses of 50, 100, and 200 mg/kg BB. PAH was induced by administration of MCT (60 mg/kg, intraperitoneal). Rats were treated with BB orally for 5 weeks (2 weeks before monocrotaline and 3 weeks after monocrotaline injection). On day 35, rats were submitted to echocardiography and catheterization, then euthanasia and RV harvesting for biochemical analyses. RESULTS: RV hypertrophy, observed in the MCT groups, was reduced with BB treatment. MCT elevated RV systolic pressure and pressure/time derivatives, while the intervention with BB decreased these parameters. PAH decreased RV output and pulmonary artery outflow acceleration/ejection time ratio, while increased RV diameters, parameters restored by BB treatment. Animals from the MCT group showed elevated lipid peroxidation and NADPH oxidase activity, outcomes attenuated in animals treated with BB, which also led to increased catalase activity. CONCLUSION: Treatment with BB partially mitigated PAH, which could be associated with improvement of RV redox state. Such findings constitute an advance in the investigation of the role of BB extract in chronic progressive cardiovascular diseases that involve the redox balance, such as PAH.


Assuntos
Mirtilos Azuis (Planta) , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Modelos Animais de Doenças , Ventrículos do Coração , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Oxirredução , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
13.
Arq. bras. cardiol ; 118(2): 435-445, 2022. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1364333

RESUMO

Resumo Fundamento O pterostilbeno (PS), um composto polifenólico natural e antioxidante, surge como uma intervenção promissora para minimizar danos do infarto agudo do miocárdio (IAM). Objetivo Este estudo teve como objetivo avaliar o desempenho do PS na promoção da homeostase redox nos pulmões e no ventrículo direito (VD) de animais infartados. Métodos Ratos Wistar machos (60 dias de idade) foram randomizados em três grupos: SHAM, IAM (infarto) e IAM+PS (IAM + pterostilbeno). Sete dias após o procedimento de IAM, os ratos foram tratados com PS (100 mg/kg/dia) por gavagem por oito dias. Os animais foram depois sacrificados e os pulmões e VD foram coletados para análise do balanço redox (diferenças foram consideradas significativas quando p<0,05). Resultados Nossos resultados mostram que o IAM desencadeia a interrupção redox no VD e nos pulmões, o que pode contribuir para danos induzido pelo IAM nesses órgãos. Consistentemente, o PS mitigou o estresse oxidativo e restaurou as defesas antioxidantes (Glutationa - GSH nos pulmões: SHAM = 0,79 ± 0,07; IAM = 0,67 ± 0,05; IAM + PS = 0,86 ± 0,14; p<0,05), indicando seu papel protetor neste cenário. Conclusão Nosso trabalho evidencia o potencial do uso de PS como abordagem terapêutica adjuvante após IAM para proteção dos tecidos pulmonares e cardíacos direitos.


Abstract Background Pterostilbene (PS), a natural and antioxidant polyphenolic compound emerges as a promising intervention in improving the myocardial infarction (MI) damages. Objetives This study aimed to evaluate PS actions in promoting redox homeostasis in lungs and right ventricle (RV) of infarcted animals. Methods Male Wistar rats (60 day-old) were randomized into three groups: SHAM, MI (infarcted), and MI+PS (MI+pterostilbene). Seven days after MI procedure, rats were treated with PS (100 mg/kg/day) via gavage for eight days. Animals were euthanized and the lungs and RV were harvested for analyses of redox balance (Differences were considered significant when p<0.05). Results Our results show that MI triggers a redox disruption scenario in RV and lungs, which can contribute to MI-induced damage on these organs. Consistently, PS mitigated oxidative stress and restored antioxidant defenses (GSH in lungs: SHAM= 0.79±0.07; MI=0.67±0.05; MI+PS=0.86±0.14; p<0.05), indicating its protective role in this scenario. Conclusions Our work evidences the PS potential use as an adjuvant therapeutic approach after MI focusing on protecting pulmonary and right-sided heart tissues.


Assuntos
Animais , Masculino , Ratos , Estilbenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Ratos Wistar
14.
An Acad Bras Cienc ; 93(suppl 4): e20210297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34706009

RESUMO

Acute myocardial infarction (AMI) is one of the major causes of heart failure and mortality. Glucocorticoids administration post-infarction has long been proposed, but it has shown conflicting results so far. This controversy may be associated with the glucocorticoid type and the period when it is administered. To elucidate these, the present aims to evaluate if the brief methylprednisolone acetate administration is determinant for heart adaptation after AMI. Male Wistar rats were divided into 3 groups: sham-operated (SHAM); infarcted (AMI); infarcted treated with methylprednisolone acetate (AMI+M). Immediately after surgery, the AMI+M group received a single dose of methylprednisolone acetate (40 mg/kg i.m.). After 56 days, the cardiac function was assessed and lungs, liver and heart were collected to determine rates of hypertrophy and congestion. Heart was used for oxidative stress and metalloproteinase activity analyses. Methylprednisolone acetate attenuated matrix metalloproteinase-2 activity, cardiac dilatation, and prevented the onset of pulmonary congestion, as well as avoided cardiac hypertrophy. Our data indicate that administration of methylprednisolone acetate shortly after AMI may be a therapeutic alternative for attenuation of detrimental ventricular remodeling.


Assuntos
Metilprednisolona , Infarto do Miocárdio , Animais , Masculino , Metaloproteinase 2 da Matriz , Metilprednisolona/uso terapêutico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Ratos , Ratos Wistar , Remodelação Ventricular
15.
Int J Pharm ; 610: 121181, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653563

RESUMO

Ambrisentan (AMB) is an orphan drug approved for oral administration that has been developed for the treatment of pulmonary arterial hypertension (PAH), a chronic and progressive pathophysiological state that might result in death if left untreated. Lipid-core nanocapsules (LNCs) are versatile nanoformulations capable of loading lipophilic drugs for topical, vaginal, oral, intravenous, pulmonary, and nasal administration. Our hypothesis was to load AMB into these nanocapsules (LNCamb) and test their effect on slowing or reducing the progression of monocrotaline-induced PAH in a rat model, upon oral administration. LNCamb displayed a unimodal distribution of diameters (around 200 nm), negative zeta potential (-11.5 mV), high encapsulation efficiency (78%), spherical shape, and sustained drug release (50-60% in 24 h). The in vivo pharmacodynamic effect of the LNCamb group was evaluated by observing the echocardiography, hemodynamic, morphometric, and histological data, which showed a significant decrease in PAH in this group, as compared to the control group (AMBsolution). LNCamb showed the benefit of reversing systolic dysfunction and preventing vascular remodeling with greater efficacy than that observed in the control group. The originality and contribution of our work reveal the promising value of this nanoformulation as a novel therapeutic strategy for PAH treatment.


Assuntos
Hipertensão Pulmonar , Nanocápsulas , Hipertensão Arterial Pulmonar , Animais , Feminino , Hipertensão Pulmonar/tratamento farmacológico , Lipídeos , Nanocápsulas/uso terapêutico , Fenilpropionatos , Piridazinas , Ratos
16.
Life Sci ; 284: 119917, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478759

RESUMO

In addition to being an antioxidant, thioredoxin (Trx) is known to stimulate signaling pathways involved in cell proliferation and to inhibit apoptosis. The aim of this study was to explore the role of Trx in some of these pathways along the progression of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male rats were first divided into two groups: monocrotaline (MCT - 60 mg/kg i.p.) and control (received saline), that were further divided into three groups: 1, 2, and 3 weeks. Animals were submitted to echocardiographic analysis. Right and left ventricles were used for the measurement of hypertrophy, through morphometric and histological analysis. The lung was prepared for biochemical and molecular analysis. One week after MCT injection, there was an increase in thioredoxin reductase (TrxR) activity, a reduction in glutathione reductase (GR) activity, and an increase in Trx-1 and vitamin D3 up-regulated protein-1 (VDUP-1) expression. Two weeks after MCT injection, there was an increase in VDUP-1, Akt and cleaved caspase-3 activation, and a decrease in Trx-1 and Nrf2 expression. PAH-induced by MCT promoted a reduction in Nrf2 and Trx-1 expression as well as an increase in Akt and VDUP-1 expression after three weeks. The increase in pulmonary vascular resistance was accompanied by increased TrxR activity, suggesting an association between the Trx system and functional changes in the progression of PAH. It seems that Trx-1 activation was an adaptive response to MCT administration to cope with pulmonary remodeling and disease progression, suggesting a potential new target for PAH therapeutics.


Assuntos
Progressão da Doença , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Tiorredoxinas/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Sobrevivência Celular , Colágeno/metabolismo , Eletrocardiografia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/patologia , Masculino , Monocrotalina , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Ratos Wistar
17.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119039, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33857568

RESUMO

Although a high cumulative dose of Doxorubicin (Dox) is known to cause cardiotoxicity, there is still a lack of understanding of the subcellular basis of this drug-induced cardiomyopathy. Differential effects of Dox on mitochondria and endoplasmic reticulum (ER) were examined in cardiomyocytes, tumor cells, implanted tumors and hearts of normal as well as tumor-bearing animals. Dox increased mitochondrial (Mito) Bax activation at 3 h in the cardiomyocyte without change in the DNA damage inducible transcriptor-3 (DDIT3) expression in the ER. Increased DDIT3 in these Dox-treated cardiomyocytes at 24 h suggested that increased MitoBax may have promoted ER stress related changes in DDIT3. Dissociation of immunoglobulin-binding protein (Bip) from activating transcription factor 6 (ATF6)-Bip complex in the ER was observed as an adaptive response to Dox. In contrast, breast cancer MCF7 cells showed an ER stress response to Dox with increased DDIT3 as early as 3 h which may have triggered a positive feedback activation of ATF6 at 12 and 24 h and promoted Calnexin. At these later time points, increased Bax activation in cancer cells suggested that MitoBax may be controlled by DDIT3 or by Calnexin. DDIT3 response in tumors was evoked by Dox, however this response was inversely correlated with increased Bip and Bax expression in hearts from tumor bearing animals. It is suggested that in Dox-induced cardiotoxicity both mitochondrial and ER stresses play an integral role through a mutual interaction where an inhibition of DDIT3 or Calnexin may also be crucial to achieve Dox resistance in cardiomyocytes.


Assuntos
Apoptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/metabolismo , Cardiotoxicidade/patologia , Linhagem Celular Tumoral , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/metabolismo
18.
Hypertens Res ; 44(8): 918-931, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875858

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by increased resistance of the pulmonary vasculature and afterload imposed on the right ventricle (RV). Two major contributors to the worsening of this disease are oxidative stress and mitochondrial impairment. This study aimed to explore the effects of monocrotaline (MCT)-induced PAH on redox and mitochondrial homeostasis in the RV and brain and how circulating extracellular vesicle (EV) signaling is related to these phenomena. Wistar rats were divided into control and MCT groups (60 mg/kg, intraperitoneal), and EVs were isolated from blood on the day of euthanasia (21 days after MCT injections). There was an oxidative imbalance in the RV, brain, and EVs of MCT rats. PAH impaired mitochondrial function in the RV, as seen by a decrease in the activities of mitochondrial complex II and citrate synthase and manganese superoxide dismutase (MnSOD) protein expression, but this function was preserved in the brain. The key regulators of mitochondrial biogenesis, namely, proliferator-activated receptor gamma coactivator 1-alpha and sirtuin 1, were poorly expressed in the EVs of MCT rats, and this result was positively correlated with MnSOD expression in the RV and negatively correlated with MnSOD expression in the brain. Based on these findings, we can conclude that the RV is severely impacted by the development of PAH, but this pathological injury may signal the release of circulating EVs that communicate with different organs, such as the brain, helping to prevent further damage through the upregulation of proteins involved in redox and mitochondrial function.


Assuntos
Vesículas Extracelulares , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Encéfalo , Modelos Animais de Doenças , Homeostase , Hipertensão Pulmonar/induzido quimicamente , Mitocôndrias , Monocrotalina/toxicidade , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar
20.
Heart Fail Rev ; 26(3): 699-709, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33033908

RESUMO

Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.


Assuntos
Ácido Ascórbico , Insuficiência Cardíaca , Antioxidantes/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...